Deploying Ten Thousand Robots:
Scalable Imitation Learning for
Lifelong Multi-Agent Path Finding


1The Robotics Institute, Carnegie Mellon University

2The Department of Mechanical Engineering, National University of Singapore

*Indicates Equal Contribution

Video 1: Real Robot Simulation with 10 Agents and Virtual Robot Simulation with 100 Agents

Video 2: Large-Scale Simulation with 10,000 Agents

Abstract

Lifelong Multi-Agent Path Finding (LMAPF) repeatedly finds collision-free paths for multiple agents that are continually assigned new goals when they reach current ones. Recently, this field has embraced learning-based methods, which reactively generate single-step actions based on individual local observations. However, it is still challenging for them to match the performance of the best search-based algorithms, especially in large-scale settings. This work proposes an imitation-learning-based LMAPF solver that introduces a novel communication module as well as systematic single-step collision resolution and global guidance techniques. Our proposed solver, Scalable Imitation Learning for LMAPF (SILLM), inherits the fast reasoning speed of learning-based methods and the high solution quality of search-based methods with the help of modern GPUs. Across six large-scale maps with up to 10,000 agents and varying obstacle structures, SILLM surpasses the best learning- and search-based baselines, achieving average throughput improvements of 137.7% and 16.0%, respectively. Furthermore, SILLM also beats the winning solution of the 2023 League of Robot Runners, an international LMAPF competition. Finally, we validated SILLM with 10 real robots and 100 virtual robots in a mock warehouse environment.

Appendix