
APPENDIX

A. Visualization of all maps

We visualize all the large maps for evaluation in Figure 6
and all the down-scaled small maps for training in Figure 7,
which keep the obstacle patterns in the corresponding large
maps.

(a) Sortation

(b) Warehouse

(c) Paris (d) Berlin

(e) Random1 (f) Random2

Fig. 6: Large maps with 10, 000 agents for evaluation.

B. Evaluation with Different Numbers of Agents

In this section, we compare Learnable PIBT and PIBT
with different global guidance and different numbers of
agents in Figure 8. The conclusions are similar to the ones in
Section V. With the same global guidance, Learnable PIBT
consistently outperforms PIBT, proving the effect of learning.

(a) Sortation (b) Warehouse

(c) Paris (d) Berlin

(e) Random1 (f) Random2

Fig. 7: Small maps with 600 agents for training.

Also, different global guidance excels in different scenarios.
An interesting observation is that in map Random2, Back-
ward Dijkstra (BD) performs better with < 10, 000 agents,
and Dynamic Guidance (DG) performs better with > 10, 000
agents. The reason may be that with more agents, there is
potentially more congestion, and DG addresses congestion
better than BD.

C. Evaluation on Learn-to-Follow Benchmark

This section compares different decentralized methods
on the Learn-to-Follow Benchmark [12] to validate the
superiority of our SILLM (Learnable PIBT) in Figure 9,
as the experiment setting in the Learn-to-Follow paper is
quite different from ours. Specifically, we compare Learnable
PIBT trained with imitation learning and with reinforcement
learning, Follower [12], SCRIMP [10], and PIBT [5]. For
a simple comparison, we only use Backward Dijkstra as
global guidance. All the training settings are the same as the
ones in the Follower paper [12]. Notably, Learnable PIBT
and Follower are trained on 40 Maze maps and then tested
on 10 different Maze maps and other types of maps. Our
Learnable PIBT trained with imitation learning consistently



performs the best across 4 different types of maps. Notably,
Follower actually only outperforms PIBT in Mazes maps but
may fail to outperform PIBT in other maps, which means the
generalization ability of Follower still needs improvement. In
contrast, our Learnable PIBT is much more generalizable.

D. Real-World Mini Example

Since during the planning process, our algorithm assumes
the position of all agents to be perfectly known at all times,
we use ground truth positions for our virtual robots and
use external localization (here, the Optitrack Motion Capture
System) to obtain accurate position information for our real
robots. However, the planned path may not be executed
accurately due to disturbances and control inaccuracies. To

(a) Sortation (b) Warehouse

(c) Paris (d) Berlin

(e) Random1 (f) Random2

Fig. 8: Evaluation with different numbers of agents. We
run each setting with 8 different seeds. The shaded area
represents the standard deviation of the throughput.

eliminate these errors, we implement an Action Dependency
Graph (ADG) [33].

The video demo is available in the supplementary material.
From our experiment with 10 real agents, we observe that
agents can reach their goals quickly without collisions, and
errors are eliminated by the ADG, demonstrating the poten-
tial of using our method in the real world. In our experiment
with 100 virtual agents, we compare PIBT with Learnable
PIBT. We can observe that Learnable PIBT outperforms
PIBT with 50% more throughput.

E. Computation Resources

Our models are trained on servers with 72 vCPU AMD
EPYC 9754 128-Core Processor, 4 RTX 4090D (24GB), and
240 GB memory. Training on each map takes less than 12
hours.

F. Baseline Methods Implementation

1) WPPL: In Section V-A, we compare our methods
with the winning solution of League of Robot Runner
Competition [19], WPPL [7]. Our implementation is based
on the public repo: https://github.com/DiligentPanda/MAPF-
LRR2023. We remove the rotation action to align with the
settings in other baselines. In addition, instead of limiting the
planning time at each step to 1 second, we limit the iterations
of LNS refinement to 40, 000, roughly the total iterations
used in our imitation learning. More iterations may improve
the throughput, but the algorithm will run even slower as it
has already been much slower than SILLM in Table III.

(a) Random 20*20 (b) Mazes 65*65

(c) den520d 64*64 (d) Paris 1 64*64

Fig. 9: Evaluation on Learn-to-Follow Benchmark.



2) MAPPO: In the ablation study (Section V-B), we
show that Imitation Learning is better than simple MAPPO-
based Reinforcement Learning [32]. Specifically, we use the
following reward function.

r(v, v′) = h(v)− h(v′)− 1 (1)

where h is the heuristic function defined in Section IV-B,
v and v′ are the current and next locations of an agent.
Take Backward Dijkstra heuristics as an example. If v′ is
1-step closer to the goal, the reward will be 0. Otherwise,
the reward will be a negative penalty. If no other agents act
as obstacles, the agent should follow its shortest path given
this reward function after learning. Reward design is crucial
to the performance of RL and worth further study.

3) Others: For other baselines in Table III, we directly
use the implementation released by the corresponding papers.
We re-trained models on our problem instances if they are
learning-based methods.

G. Detailed Comparison for Different Guidance

We report detailed throughput and average running time
for comparing PIBT and L-PIBT with different guidance
in Table IV. Notably, in contrast to the conclusion in the
large map, Static Guidance works the best among the three
heuristics in the small map for training. Overall, since
all the heuristics are manually designed, the best heuristic
is instance-dependent and should be evaluated empirically.
Also, these heuristics only define the framework, but there
could be a lot of hyperparameters that affect the performance.
Automatic hyperparameter tuning can be helpful but doesn’t
necessarily remove the structural bias in the framework.



TABLE IV: The comparison of PIBT and L-PIBT with different guidance. The left part is the result of downscaled small
instances. The right part is the result of the original large instances. We evaluate each instance with 8 runs of different starts
and goals. Each column records the mean throughput with the standard deviation in the parentheses. The Time (in seconds)
and Score refer to the average single-step planning time and the average score defined in Section V-A.

Algorithm Small maps with 600 agents Large maps with 10,000 agents
Sort Ware Pari Berl Ran1 Ran2 Time Score Sort Ware Pari Berl Ran1 Ran2 Time Score

PIBT [5] 7.79
(0.36)

4.62
(0.10)

5.59
(0.15)

5.12
(0.35)

10.84
(0.08)

6.80
(0.48) 0.004 0.60 32.44

(0.10)
19.39
(2.04)

15.43
(0.34)

15.09
(0.26)

46.51
(0.08)

29.08
(1.26) 0.014 0.61

L-PIBT 14.76
(0.38)

8.69
(0.33)

7.76
(0.17)

7.16
(0.62)

12.73
(0.11)

10.76
(0.12) 0.007 0.89 42.91

(0.07)
27.34
(1.31)

18.84
(0.20)

19.16
(0.33)

53.74
(0.10)

44.02
(0.90) 0.024 0.80

PIBT+SG 13.66
(0.22)

9.91
(0.24)

6.18
(0.19)

4.50
(0.74)

11.66
(0.12)

7.46
(0.37) 0.004 0.74 42.51

(0.10)
39.34
(0.11)

18.11
(0.34)

17.62
(0.26)

46.89
(0.14)

25.57
(0.51) 0.014 0.75

L-PIBT+SG 16.52
(0.09)

14.28
(0.12)

8.85
(0.11)

7.19
(0.14)

12.34
(0.11)

10.09
(0.10) 0.007 0.98 43.98

(0.07)
42.24
(0.05)

22.54
(0.17)

21.59
(0.23)

52.49
(0.10)

32.44
(0.31) 0.023 0.85

PIBT+DG
(TrafficFlow [6])

11.78
(0.20)

9.10
(0.42)

7.44
(0.24)

5.70
(0.43)

10.35
(0.37)

8.48
(0.10) 0.016 0.76 36.89

(0.22)
27.78
(0.88)

27.51
(0.69)

27.03
(0.54)

45.62
(0.84)

33.64
(2.32) 0.570 0.81

L-PIBT+DG 14.41
(0.16)

11.67
(0.54)

8.34
(0.07)

6.77
(0.28)

11.14
(0.13)

9.18
(0.14) 0.029 0.88 39.38

(0.09)
35.39
(0.26)

31.00
(0.89)

30.52
(0.98)

50.48
(0.14)

44.37
(0.11) 0.721 0.94


